Dual Energy Computed Tomography: New technology for metal artifacts reduction

Main Article Content

Exequiel Reynoso
Patricia Carrascosa
Carlos Capunay
Alejandro Rasumoff
Javier Vallejos
Jimena Carpio
Karen Lago

Abstract

PurposeTo explore the usefulness of dual energy imaging using gemstone spectral imaging (GSI) technology and dedicated software for metal artifact reduction (MARS) for the evaluation of periprosthetic tissues, and to assess image interpretability of implant-related complications.MethodsSignal density (SD) measurements (HU) were performed in the periprosthetic and remote (control) areas in bone, soft tissue, and fat among 80 patients using a high definition scanner ((GSI).  Polychromatic images (PI) and virtual monochromatic spectral images (VMSI) with MARS were obtained, and image quality and diagnostic interpretability were evaluated using a Likert scale.ResultsUsing PI, the periprosthetic area showed significant differences compared to remote areas among the three tissue explored (p<0.0001 for all); with no signficant differences suing VMSI-MARS (p=0.053 bone, p=0.32 soft tissue, and p=0.13 fat), suggesting similar SD compared to  normal (remote) tissue. Furthermore, periprosthetic PI noise levels (SD) were significantly higher than with VMSI-MARS (p<0.0001). All periprosthetic areas were deemed non-interpretable using PI, compared to 11 (9%) using VMSI-MARS. There were no differences in radiation dose compared to a sex and aged-matched control group (p=0.21).ConclusionsVMSI-MARS technology has the ability to reduce periprosthetic artifacts, achieving a significant increase in the identify tissues and diagnostic interpretability of complications related to the implants.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
Reynoso, E., Carrascosa, P., Capunay, C., Rasumoff, A., Vallejos, J., Carpio, J., & Lago, K. (2017). Dual Energy Computed Tomography: New technology for metal artifacts reduction. Revista De La Asociación Argentina De Ortopedia Y Traumatología, 82(1), 5-13. https://doi.org/10.15417/572
Section
Clinical Research
Author Biographies

Exequiel Reynoso, Diagnostico Maipu

Departamento de Investigación. Departamento de TC y RM

Patricia Carrascosa, Diagnostico Maipu

Departamento de Investigación. Departamento de TC y RM. Dirección Medica

Carlos Capunay, Diagnostico Maipu

Departamento de Investigación. Departamenteo de TC y RM

Alejandro Rasumoff, Diagnostico Maipu

Departamento de Investigación. Departamento de TC y RM

Javier Vallejos, Diagnostico Maipu

Jefe del Servicio de Resonancia Magnética. Departamento de Investigación. Departamento de TC y RM

Jimena Carpio, Diagnostico Maipu

Departamento de Investigación. Departamento de TC y RM

Karen Lago, Diagnostico Maipu

Departamento de Investigación. Deparftamenteo de TC y RM.

References

1. Barrett JF, Keat N. Artifacts in ct: Recognition and avoidance. Radiographics : a review publication of the Radiological Society of North America, Inc. 2004;24:1679-1691

2. Matsumoto K, Jinzaki M, Tanami Y, Ueno A, Yamada M, Kuribayashi S. Virtual monochromatic spectral imaging with fast kilovoltage switching: Improved image quality as compared with that obtained with conventional 120-kvp ct. Radiology. 2011;259:257-262

3. Bamberg F, Dierks A, Nikolaou K, Reiser MF, Becker CR, Johnson TR. Metal artifact reduction by dual energy computed tomography using monoenergetic extrapolation. European radiology. 2011;21:1424-1429

4. Pessis E, Campagna R, Sverzut JM, Bach F, Rodallec M, Guerini H, Feydy A, Drape JL. Virtual monochromatic spectral imaging with fast kilovoltage switching: Reduction of metal artifacts at ct. Radiographics : a review publication of the Radiological Society of North America, Inc. 2013;33:573-583

5. Mangold S, Gatidis S, Luz O, Konig B, Schabel C, Bongers MN, Flohr TG, Claussen CD, Thomas C. Single-source dual-energy computed tomography: Use of monoenergetic extrapolation for a reduction of metal artifacts. Investigative radiology. 2014;49:788-793

6. Wang Y, Qian B, Li B, Qin G, Zhou Z, Qiu Y, Sun X, Zhu B. Metal artifacts reduction using monochromatic images from spectral ct: Evaluation of pedicle screws in patients with scoliosis. European journal of radiology. 2013;82:e360-366

7. Meinel FG, Bischoff B, Zhang Q, Bamberg F, Reiser MF, Johnson TR. Metal artifact reduction by dual-energy computed tomography using energetic extrapolation: A systematically
optimized protocol. Investigative radiology. 2012;47:406-414

8. Nakamoto A, Kim T, Hori M, Onishi H, Tsuboyama T, Sakane M, Tatsumi M, Tomiyama N. Clinical evaluation of image quality and radiation dose reduction in upper abdominal computed tomography using model-based iterative reconstruction; comparison with filtered back projection and adaptive statistical iterative reconstruction. European journal of radiology. 2015;84:1715-1723

9. Morsbach F, Bickelhaupt S, Wanner GA, Krauss A, Schmidt B, Alkadhi H. Reduction of metal artifacts from hip prostheses on ct images of the pelvis: Value of iterative reconstructions. Radiology. 2013;268:237-244

10. Zhu Z, Zhao XM, Zhao YF, Wang XY, Zhou CW. Feasibility study of using gemstone spectral imaging (gsi) and adaptive statistical iterative reconstruction (asir) for reducing radiation and iodine contrast dose in abdominal ct patients with high bmi values. PloS one. 2015;10:e0129201

11. Han SC, Chung YE, Lee YH, Park KK, Kim MJ, Kim KW. Metal artifact reduction software used with abdominopelvic dual-energy ct of patients with metal hip prostheses: Assessment of image quality and clinical feasibility. AJR. American journal of roentgenology. 2014;203:788.

12. Schwahofer A, Bar E, Kuchenbecker S, Grossmann JG, Kachelriess M, Sterzing F. The application of metal artifact reduction (mar) in ct scans for radiation oncology by monoenergetic extrapolation with a dect scanner. Zeitschrift fur medizinische Physik. 2015

13. Jia Y, Zhang J, Fan J, Li C, Sun Y, Li D, Xiao X. Gemstone spectral imaging reduced artifacts from metal coils or clips after treatment of cerebral aneurysms: A retrospective study of 35 patients. The British journal of radiology. 2015:20150222

14. Lee YH, Park KK, Song HT, Kim S, Suh JS. Metal artefact reduction in gemstone spectral imaging dual-energy ct with and without metal artefact reduction software. European radiology. 2012;22:1331-1340

15. Lewis M, Reid K, Toms AP. Reducing the effects of metal artefact using high kev monoenergetic reconstruction of dual energy ct (dect) in hip replacements. Skeletal radiology. 2013;42:275-282

16. European guidelines on quality criteria for computed tomography. Available at: Http://www.Drs.Dk/guidelines/ct/quality/index.Htm. Accessed august 2015.

17. Guggenberger R, Winklhofer S, Osterhoff G, Wanner GA, Fortunati M, Andreisek G, Alkadhi H, Stolzmann P. Metallic artefact reduction with monoenergetic dual-energy ct: Systematic ex vivo evaluation of posterior spinal fusion implants from various vendors and different spine levels. European radiology. 2012;22:2357-2364

18. Schneider D, Apfaltrer P, Sudarski S, Nance JW, Jr., Haubenreisser H, Fink C, Schoenberg SO, Henzler T. Optimization of kiloelectron volt settings in cerebral and cervical dual-energy ct angiography determined with virtual monoenergetic imaging. Academic radiology. 2014;21:431-436

19. Liu PT, Pavlicek WP, Peter MB, Spangehl MJ, Roberts CC, Paden RG. Metal artifact reduction image reconstruction algorithm for ct of implanted metal orthopedic devices: A work in progress. Skeletal radiology. 2009;38:797-802