Sistema de barras magnéticas. Resultados y complicaciones

Contenido principal del artículo

Boris Falconi
Rodrigo G. Remondino
Lucas Piantoni
Carlos Tello
Eduardo Galaretto
Sofía Frank
Mariano A. Noel

Resumen

Introducción: El uso del sistema de barras magnéticas para el tratamiento de la escoliosis de comienzo temprano es un método utilizado en los últimos 10 años; su eficacia está respaldada por la bibliografía, pero no está exento de complicaciones.
Objetivo: Analizar retrospectivamente una serie de 37 pacientes tratados con barras magnéticas en escoliosis de comienzo temprano.
Materiales y Métodos: Se realizó un estudio retrospectivo entre 2014 y 2019. Se dividió a los pacientes en: grupo 1 (procedimientos primarios con barras magnéticas) y grupo 2 (conversiones de sistema tradicional a barras magnéticas).
Resultados: Se incluyó a 19 niñas y 18 niños (edad promedio 8 años al operarse), las etiologías fueron variadas. Entre el grupo 1 (n = 28) y el grupo 2 (n = 9), el seguimiento promedio posoperatorio fue de 3.6 años. El valor angular promedio preoperatorio de escoliosis era de 64° (rango 39°-101°) y el de cifosis, de 51° (rango 7°-81°). El valor angular promedio de escoliosis en el posoperatorio inmediato fue de 41° (rango 17°-80°) y el de cifosis, de 34° (rango 7°-82°). Se produjeron 2 roturas de barra y una cifosis de unión proximal, 2 aflojamientos de tornillos proximales, una falla del sistema de distracción de barras magnéticas y una infección del sitio quirúrgico.
Conclusiones: Nuestros resultados preliminares, aunque son a corto plazo, sugieren que la barra magnética podría ser un método eficaz en este tipo de enfermedad.

Descargas

La descarga de datos todavía no está disponible.

Métricas

Cargando métricas ...

Detalles del artículo

Cómo citar
Falconi, B., Remondino, R. G., Piantoni, L., Tello, C., Galaretto, E., Frank, S., & Noel, M. A. (2023). Sistema de barras magnéticas. Resultados y complicaciones. Revista De La Asociación Argentina De Ortopedia Y Traumatología, 88(3), 302-313. https://doi.org/10.15417/issn.1852-7434.2023.88.3.1537
Sección
Investigación Clínica
Biografía del autor/a

Boris Falconi, Servicio de Patología Espinal, Hospital de Pediatría “Prof. Dr. Juan P. Garrahan”, Ciudad Autónoma de Buenos Aires, Argentina

Servicio de Patología Espinal, Hospital de Pediatría “Prof. Dr. Juan P. Garrahan”, Ciudad Autónoma de Buenos Aires, Argentina

Rodrigo G. Remondino, Servicio de Patología Espinal, Hospital de Pediatría “Prof. Dr. Juan P. Garrahan”, Ciudad Autónoma de Buenos Aires, Argentina

Servicio de Patología Espinal, Hospital de Pediatría “Prof. Dr. Juan P. Garrahan”, Ciudad Autónoma de Buenos Aires, Argentina

Lucas Piantoni, Servicio de Patología Espinal, Hospital de Pediatría “Prof. Dr. Juan P. Garrahan”, Ciudad Autónoma de Buenos Aires, Argentina

Servicio de Patología Espinal, Hospital de Pediatría “Prof. Dr. Juan P. Garrahan”, Ciudad Autónoma de Buenos Aires, Argentina

Carlos Tello, Servicio de Patología Espinal, Hospital de Pediatría “Prof. Dr. Juan P. Garrahan”, Ciudad Autónoma de Buenos Aires, Argentina

Servicio de Patología Espinal, Hospital de Pediatría “Prof. Dr. Juan P. Garrahan”, Ciudad Autónoma de Buenos Aires, Argentina

Eduardo Galaretto, Servicio de Patología Espinal, Hospital de Pediatría “Prof. Dr. Juan P. Garrahan”, Ciudad Autónoma de Buenos Aires, Argentina

Servicio de Patología Espinal, Hospital de Pediatría “Prof. Dr. Juan P. Garrahan”, Ciudad Autónoma de Buenos Aires, Argentina

Sofía Frank, Servicio de Patología Espinal, Hospital de Pediatría “Prof. Dr. Juan P. Garrahan”, Ciudad Autónoma de Buenos Aires, Argentina

Servicio de Patología Espinal, Hospital de Pediatría “Prof. Dr. Juan P. Garrahan”, Ciudad Autónoma de Buenos Aires, Argentina

Mariano A. Noel, Servicio de Patología Espinal, Hospital de Pediatría “Prof. Dr. Juan P. Garrahan”, Ciudad Autónoma de Buenos Aires, Argentina

Servicio de Patología Espinal, Hospital de Pediatría “Prof. Dr. Juan P. Garrahan”, Ciudad Autónoma de Buenos Aires, Argentina

Citas

1. Skaggs DL, Guillaume T, El-Hawary R, Emans J, Mendelow M, Smith J, et al. Early Onset Scoliosis Consensus
Statement, SRS Growing Spine Committee, 2015. Spine Deform 2015;3(2):107. https://doi.org/10.1016/j.jspd.2015.01.002

2. Williams BA, Matsumoto H, McCalla JD, Akbarnia BA, Blakemore LC, Betz RR, et al. Development and initial
validation of the classification of early onset scoliosis (CEOS). J Bone Joint Surg Am 2014;96(16):1359-67.
https://doi.org/10.2106/JBJS.M.00253

3. Campbell RM, Smith MD. Thoracic insufficiency syndrome and exotic scoliosis. J Bone Joint Surg Am
2007;89(Suppl 1):108-22. https://doi.org/10.2106/JBJS.F.00270

4. Pehrsson K, Larsson S, Nachemson A. Long-term follow-up of patients with untreated scoliosis. A study of
mortality, causes of death, and symptoms. Spine (Phila Pa 1979) 1992;17(9):1091-6.
https://doi.org/10.1097/00007632-199209000-00014

5. Hughes MS, Swarup I, Makarewich CA, Williams BA, Talwar D, Cahill PJ, et al. Expert Consensus for Early Onset
Scoliosis Surgery. J Pediatr Orthop 2020;40(7):e621-e628. https://doiorg/10.1097/BPO.0000000000001473

6. Calderaro C, Labianca L, Dolan LA, Yamashita K, Weinstein SL. Early-onset scoliosis treated with magnetically
controlled growing rods. Orthopedics 2020;43(6):e601-e608. https://doi.org/10.3928/01477447-20200910-04

7. Vitale MG, Matsumoto H, Roye DP Jr, Bye MR, Gomez JA, Booker WA, et al. A retrospective cohort study of
pulmonary function, radiographic measures, and quality of life in children with congenital scoliosis: an evaluation of patient outcomes after early spinal fusion. Spine (Phila Pa 1976) 2008;33(11):1242-9.
https://doi.org/10.1097/BRS.0b013e3181714536

8. Sankar WN, Acevedo DC, Skaggs DL. Comparison of complications among growing spinal implants. Spine (Phila Pa 1976) 2010;35(23):2091-6. https://doi.org/10.1097/BRS.0b013e3181c6edd7

9. Cheung KM, Cheung JP, Samartzis D, Mak K, Wong Y, Akbarnia BA, et al. Magnetically controlled growing rods
for severe spinal curvature in young children: a prospective case series. Lancet 2012;379:1967-74.
https://doi.org/10.1016/S0140-6736(12)60112-3

10. Yang S, Andras LM, Redding GJ, Skaggs DL. Early-onset scoliosis: A review of history, current treatment, and
future directions. Pediatrics 2016;137(1). https://doi.org/10.1542/peds.2015-0709

11. Beaven A, Gardner AC, Spilbury JB, Marks DS, Mehta JS, Newton-Ede M, et al. Magnetically controlled growing
rods: The experience of mechanical failure from a single center consecutive series of 28 children with a minimum
follow-up of 2 years. Asian Spine J 2018;12(5):794-802. https://doi.org/10.31616/asj.2018.12.5.794

12. Cyr M, Hilaire TS, Pan Z, Thompson GH, Vitale MG, Garg S, et al. Classification of early onset scoliosis has
excellent interobserver and intraobserver reliability. J Pediatr Orthop 2017;37(1):e1-e3. https://doi.org/10.1097/BPO.0000000000000688

13. Cheung JPY, Cheung KM. Current status of the magnetically controlled growing rod in treatment of early-onset scoliosis: What we know after a decade of experience. J Orthop Surg (Hong Kong) 2019;27(3):2309499019886945. https://doi.org/10.1177/2309499019886945

14. Skov ST, Wijdicks SPJ, Bünger C, Castelein RM, Li H, Kruyt MC. Treatment of early-onset scoliosis with a hybrid
of a concave magnetic driver (magnetic controlled growth rod) and a contra-lateral passive sliding rod construct
with apical control: preliminary report on 17 cases. Spine J 2018;18(1):122-9. https://doi.org/10.1016/j.spinee.2017.06.027

15. Choi E, Yaszay B, Mundis G, Hosseini P, Pawelek J, Alanay A, et al. Implant complications after magnetically
controlled growing rods for early onset scoliosis: A multicenter retrospective review. J Pediatr Orthop
2017;37(8):e588-e592. https://doi.org/10.1097/BPO.0000000000000803

16. Obid P, Yiu K, Cheung K, Kwan K, Ruf M, Cheung JPY. Magnetically controlled growing rods in early onset
scoliosis: radiological results, outcome, and complications in a series of 22 patients. Arch Orthop Trauma Surg
2021;141(7):1163-74. https://doi.org/10.1007/s00402-020-03518-z

17. Dannawi Z, Altaf F, Noordeen H, Harshavardhana NS, El Sebaie H. Early results of a remotely-operated magnetic growth rod in early-onset scoliosis. Bone Joint J 2013;95-B(1):75-80.
https://doi.org/10.1302/0301-620X.95B1.29565

18. Rolton D, Richards J, Nnadi C. Magnetic controlled growth rods versus conventional growing rod systems in the treatment of early onset scoliosis: a cost comparison. Eur Spine J 2015;24(7):1457-61.
https://doi.org/10.1007/s00586-014-3699-7

19. Bekmez S, Dede O, Yazici M. Advances in growing rods treatment for early onset scoliosis. Curr Opin Pediatr
2017;29(1):87-93. https://doi.org/10.1097/MOP.0000000000000432

20. Yilmaz G, Huri G, Demirkran G, Dağloğlu K, Ozkan C, Alanay A, et al. The effect of posterior distraction on
vertebral growth in immature pigs: an experimental simulation of growing rod technique. Spine (Phila Pa 1976)
2010;35(7):730-3. https://doi.org/10.1097/BRS.0b013e3181bcc3a3

21. Pasha S, Sturm PF. Contouring the magnetically controlled growing rods: impact on expansion capacity and proximal junctional kyphosis. Eur J Orthop Surg Traumatol 2021;31(1):79-84. https://doi.org/10.1007/s00590-020-02743-x

22. Tello CA. Harrington instrumentation without arthrodesis and consecutive distraction program for young children with severe spinal deformities. Experience and technical details. Orthop Clin North Am 1994;25:333-51.
PMID: 8159406

23. Bekmez S, Afandiyev A, Dede O, Karaismailoğlu E, Demirkiran HG, Yazici M. Is magnetically controlled growing rod the game changer in early-onset scoliosis? A preliminary report. J Pediatr Orthop 2019;39(3):e195-e200. https://doi.org/10.1097/bpo.0000000000001268

24. Jenks M, Craig J, Higgins J, Willits I, Barata T, Wood H, et al. The MAGEC system for spinal lengthening in
children with scoliosis: A NICE Medical Technology Guidance. Appl Health Econ Health Policy 2014;12:587-99.
https://doi.org/10.1007/s40258-014-0127-4

25. Rushton PRP, Smith SL, Forbes L, Bowey AJ, Gibson MJ, Joyce TJ. Force testing of explanted magnetically
controlled growing rods. Spine (Phila Pa 1976) 2019;44(4):233-9. https://doi.org/10.1097/BRS.0000000000002806

26. Yoon WW, Chang AC, Tyler P, Butt S, Raniga S, Noordeen H. The use of ultrasound in comparison to radiography in magnetically controlled growth rod lengthening measurement: a prospective study. Eur Spine J 2015;24(7):1422-6. https://doi.org/10.1007/s00586-014-3589-z

27. Stokes OM, O’Donovan EJ, Samartzis D, Bow CH, Luk KDK, Cheung KMC. Reducing radiation exposure in earlyonset scoliosis surgery patients: novel use of ultrasonography to measure lengthening in magnetically-controlled growing rods. Spine J 2014;14(10):2397-404. https://doi.org/doi: 10.1016/j.spinee.2014.01.039

28. Cheung JPY, Yiu KKL, Bow C, Cheung PWH, Samartzis D, Cheung KMC. Learning curve in monitoring
magnetically controlled growing rod distractions with ultrasound. Spine (Phila Pa 1976) 2017;42(17):1289-94.
https://doi.org/10.1097/BRS.0000000000002114

29. Thompson GH, Akbarnia BA, Campbell RM Jr. Growing rod techniques in early-onset scoliosis. J Pediatr Orthop
2007;27(3):354-61. https://doi.org/10.1097/BPO.0b013e3180333eea

30. Heydar AM, Şirazi S, Bezer M. Magnetic controlled growing rods as a treatment of early onset scoliosis: Early
results with two patients. Spine (Phila Pa 1976) 2016;41(22):E1336-E1342. https://doi.org/10.1097/BRS.0000000000001614

31. Mardare M, Kieser DC, Ahmad A, Tubramanian T, Haleem S, Thakar C, et al. Targeted distraction: Spinal growth in children with early-onset scoliosis treated with a tail-gating technique for magnetically controlled growing rods. Spine (Phila Pa 1976) 2018;43(20):1225-31. https://doi.org/10.1097/BRS.0000000000002668

32. Kwan KYH, Alanay A, Yazici M, Demirkiran G, Helenius I, Nnadi C, et al. Unplanned reoperations in magnetically controlled growing rod surgery for early onset scoliosis with a minimum of two-year follow-up. Spine (Phila Pa 1976) 2017;42(24):E1410-E1414. https://doi.org/10.1097/BRS.0000000000002297

33. Zarei M, Tavakoli M, Ghadimi E, Moharrami A, Nili A, Vafaei A, et al. Complications of dual growing rod with allpedicle screw instrumentation in the treatment of early-onset scoliosis. J Orthop Surg Res 2021;16(1):112.
https://doi.org/10.1186/s13018-021-02267-y

34. Teoh KH, Winson DM, James SH, Jones A, Howes J, Davies PR, et al. Do magnetic growing rods have lower
complication rates compared with conventional growing rods? Spine J 2016;16(4 Suppl):S40-S44.
https://doi.org/10.1016/j.spinee.2015.12.099

35. Lebon J, Batailler C, Wargny M, Choufani E, Violas P, Fron D, et al. Magnetically controlled growing rod in early
onset scoliosis: a 30-case multicenter study. Eur Spine J 2017;26(6):1567-76. https://doi.org/10.1007/s00586-016-4929-y

36. Akbarnia BA, Pawelek JB, Cheung KM, Demirkiran G, Elsebaie H, Emans JB, et al. Traditional growing rods
versus magnetically controlled growing rods for the surgical treatment of early-onset scoliosis: a case-matched
2-year study. Spine Deform 2014;2(6):493-7. https://doi.org/10.1016/j.jspd.2014.09.050

37. Heydar AM, Sirazi S, Okay E, Kiyak G, Beze M. Short segment spinal instrumentation in early-onset scoliosis
patients treated with magnetically controlled growing rods: surgical technique and mid- short-term outcomes. Spine (Phila Pa 1976) 2017;42(24):1888-94. https://doi.org/10.1097/BRS.0000000000002265

38. Ridderbusch K, Rupprecht M, Kunkel P, Hagemann C, Stücker R. Preliminary results of magnetically controlled
growing rods for early onset scoliosis. J Pediatr Orthop 2017;37(8):e575-e580.
https://doi.org/10.1097/BPO.0000000000000752

39. Keskinen H, Helenius I, Nnadi C, Cheung K, Ferguson J, Mundis G, et al. Preliminary comparison of primary and conversion surgery with magnetically controlled growing rods in children with early onset scoliosis. Eur Spine J 2016;25(10):3294-300. https://doi.org/10.1007/s00586-016-4597-y

40. Thakar C, Kieser DC, Mardare M, Haleem S, Fairbank J, Nnadi C. Systematic review of the complications
associated with magnetically controlled growing rods for the treatment of early onset scoliosis. Eur Spine J
2018;27(9):2062-71. https://doi.org/10.1007/s00586-018-5590-4

41. Cheung PY, Yiu KKL, Samartzis D, Kwan K, Tan BB, Cheung KMC. Rod lengthening with the magnetically
controlled growing rod: Factors influencing rod slippage and reduced gains during distractions. Spine (Phila Pa
1976) 2018;43(7):E399-E405. https://doi.org/10.1097/BRS.0000000000002358

42. Hosseini P, Pawelek J, Mundis GM, Yaszay B, Ferguson J, Helenius I, et al. Magnetically controlled growing rods for early-onset scoliosis: a multicenter study of 23 cases with minimum 2 years follow-up. Spine (Phila Pa 1976) 2016;41(18):1456-62. https://doi/10.1097/BRS.0000000000001561

Artículos más leídos del mismo autor/a