Expresión de proteínas inducibles por frío en la médula espinal de rata sometida a hipotermia sistémica
Contenido principal del artículo
Resumen
Materiales y Métodos: Se dividió a 24 ratas en dos grupos: normotermia a 24 °C (n = 6) e hipotermia a 8 °C (n = 18), durante 180 min, sacrificadas a las 12, 24 y 48 h después del tratamiento. Se utilizó Western blot e inmunohistoquímica para la CIRBP.
Resultados: Se observó un aumento progresivo de la expresión de la CIRBP de 12 a 48 h en las motoneuronas del asta anterior. Los valores fueron estadísticamente significativos entre los grupos de 24 h y 48 h comparados con los de los controles.
Conclusiones: Este modelo experimental resultó eficaz, accesible y económico para generar hipotermia sistémica y abre un abanico de estrategias terapéuticas. El aumento en la expresión de las proteínas inducibles por frío en la médula espinal de ratas permite, por primera vez, estudiar el beneficio que aporta la hipotermia a nivel molecular, lo que resulta de suma importancia para estudios de terapéuticas en las lesiones medulares.
Descargas
Métricas
Detalles del artículo
La aceptación del manuscrito por parte de la revista implica la no presentación simultánea a otras revistas u órganos editoriales. La RAAOT se encuentra bajo la licencia Creative Commons 4.0. Atribución-NoComercial-CompartirIgual (http://creativecommons.org/licenses/by-nc-sa/4.0/deed.es). Se puede compartir, copiar, distribuir, alterar, transformar, generar una obra derivada, ejecutar y comunicar públicamente la obra, siempre que: a) se cite la autoría y la fuente original de su publicación (revista, editorial y URL de la obra); b) no se usen para fines comerciales; c) se mantengan los mismos términos de la licencia.
En caso de que el manuscrito sea aprobado para su próxima publicación, los autores conservan los derechos de autor y cederán a la revista los derechos de la publicación, edición, reproducción, distribución, exhibición y comunicación a nivel nacional e internacional en las diferentes bases de datos, repositorios y portales.
Se deja constancia que el referido artículo es inédito y que no está en espera de impresión en alguna otra publicación nacional o extranjera.
Por la presente, acepta/n las modificaciones que sean necesarias, sugeridas en la revisión por los pares (referato), para adaptar el trabajo al estilo y modalidad de publicación de la Revista.
Citas
Alabama, Birmingham, Alabama; 2021. Disponible en: https://www.nscisc.uab.edu/public/SCI%20Facts%20and%20Figures%20at%20a%20Glance%20-%202021%20-%20Spanish.pdf
2. Ministerio de Salud de la Nación Argentina, Anuario Estadístico Nacional Sobre Discapacidad del año 2013.
Disponible en: https://www.snr.gov.ar/publicacion
3. Dorfman VB, Rey-Funes M, Bayona JC, López EM, Coirini H, Loidl CF. Nitric oxide system alteration at spinal
cord as a result of perinatal asphyxia is involved in behavioral disabilities: hypothermia as preventive treatment. J
Neurosci Res 2009;87(5):1260-9. https://doi.org/10.1002/jnr.21922
4. Loidl CF. Short and long term effects of perinatal asphyxia. Thesis. Netherlands: Maastricht University; 1997.
5. Loidl CF, De Vente J, van Dijk E, Vles SH, Steinbusch H, Blanco C. Hypothermia during or after severe perinatal
asphyxia prevents increase in cyclic GMP-related nitric oxide levels in the newborn rat striatum. Brain Res
1998;791(1-2):303-7. https://doi.org/10.1016/s0006-8993(98)00195-4
6. Peña M, Rey-Funes M, Sarotto A, Loidl FC. Estudio del patrón migratorio de neuronas corticofrontales que
expresan reelina en la asfixia perinatal experimental. Medicina (Buenos Aires) 2012;72(Supl II) Neurociencias 4 369 p. 157. Disponible en: https://medicinabuenosaires.com/demo/revistas/vol72-12/supl-2/53-252-SAIC-Resumenes72-2012.pdf
7. Rey-Funes M, Ibarra ME, Dorfman VB, López EM, López-Costa JJ, Coirini H, et al. Hypothermia prevents
the development of ischemic proliferative retinopathy induced by severe perinatal asphyxia. Exp Eye Res
2010;90(1):113-20. https://doi.org/10.1016/j.exer.2009.09.019
8. Rey-Funes M, Ibarra M, Dorfman VB, Martinez-Murillo R, Martinez A, Coirini H, et al. Hypothermia prevents
nitric oxide system changes in retina induced by severe perinatal asphyxia. J Neurosci Res 2011;89(5):729-43.
https://doi.org/10.1002/jnr.22556
9. Rey-Funes M, Dorfman VB, Ibarra M, Peña E, Contartese DS, Goldstein J, et al. Hypothermia prevents gliosis and angiogenesis development in an experimental model of ischemic proliferative retinopathy. Invest Ophthalmol Vis Sci 2013;54(4):2836-46. https://doi.org/10.1167/iovs.12-11198
10. Rey-Funes M, Contartese DS, Rolón F, Sarotto A, Dorfman VB, Loidl CF. Efecto protector de la hipotermia en
la retinopatía del prematuro (ROP) experimental. Rol de las proteínas inducibles por frío. Arch Argent Oftalm
2016;(6):45-56. Disponible en: https://archivosoftalmologia.com.ar/index.php/revista/issue/view/17/13
11. Rey-Funes M, Larrayoz IM, Contartese DS, Soliño M, Sarotto AJ, Bustelo M, et al. Hypotermia prevents retinal
damage generated by optic nerve trauma in the rat. Sci Rep 2017;7(1):6966. https://doi.org/10.1038/s41598-017-07294-6
12. Ekimova IV. Changes in the metabolic activity of neurons in the anterior hypothalamic nuclei in rats during
hyperthermia, fever, and hypothermia. Neurosci Behav Physiol 2003;33(5):455-60. https://doi.org/10.1023/a:1023459100213
13. Gisselsson LL, Matus A, Wieloch TJ. Actin redistribution underlies the sparing effect of mild hypothermia on
dendritic spine morphology after in vitro ischemia. Cereb Blood Flow Metab 2005;25(10):1346-55.
https://doi.org/10.1038/sj.jcbfm.9600131
14. Lei B, Adachi N, Arai T. The effect of hypothermia on H2O2 production during ischemia and reperfusion: a
microdialysis study in the gerbil hippocampus. Neurosci Lett 1997;222(2):91-4. https://doi.org/10.1016/s0304-3940(97)13349-3
15. Katz LM, Young AS, Frank JE, Wang Y, Park K. Regulated hypothermia reduces brain oxidative stress after
hypoxic-ischemia. Brain Res 2004;1017(1-2):85-91. https://doi.org/10.1016/j.brainres.2004.05.020
16. Atkins CA, Oliva AA Jr, Alonso OF, Chen S, Bramlet HM, Hu BR, et al. Hypothermia treatment potentiates
DRK1/2 activation after traumatic brain injury. Eur J Neurosci 2007;26(4):810-9. https://doi.org/10.1111/j.1460-9568.2007.05720.x
17. Gunn AJ. Cerebral hypothermia for prevention of brain injury following perinatal asphyxia. Curr Opin Pediatr
2000;12(2):111-5. https://doi.org/10.1097/00008480-200004000-00004
18. Lo TP, Cho K-S, Garg MS, Lynch MP, Marcillo AE, et al. Systemic hypothermia improves histological and
functional outcome after cervical spinal cord contusion in rats. J Comp Neurol 2009;514(5):433-48.
https://doi.org/10.1002/cne.22014
19. Shibuya S, Miyamoto O, Janjua NA, Itano T, Mori S, Horimatsu H. Post-traumatic moderate systemic hypothermia reduces TUNEL positive cells following spinal cord injury in rat. Spinal Cord 2004;42(1):29-34.
https://doi.org/10.1038/sj.sc.3101516
20. Yu CG, Jimenez O, Marcillo AE, Weider B, Bangerter K, Dietrich WD, et al. Beneficial effects of modest systemic
hypothermia on locomotor function and histopathological damage following contusion induced spinal cord injury in rats. J Neurosurg 2000;93(1 Suppl):85-93. https://doi.org/10.3171/spi.2000.93.1.0085
21. Yu WR, Westergren H, Farooque M, Holtz A, Olsson Y. Systemic hypothermia following compression injury
of the rat spinal cord: reduction of plasma protein extravasation demonstrated by immunohistochemistry. Acta
Neuropathol 1999;98(1):15–21. https://doi.org/10.1007/s004010051046
22. Batchelor PE, Skeers P, Antonic A, Wills TE, Howells DW, et al. Systematic review and meta-analysis of therapeutic hypothermia in animal models of spinal cord injury. PLoS One 2013;8(8):e71317. https://doi.org/10.1371/journal.pone.007131
23. Sonna LA, Fujita J, Gaffin SL, Lilly CM. Invited review: Effects of heat and cold stress on mammalian gene
expression. J Appl Physiol (1985) 2002;92(4):17251742. https://doi.org/10.1152/japplphysiol.01143.2001
24. Al-Fageeh MB, Smales CM. Control and regulation of the cellular responses to cold shock: the responses in yeast and mammalian systems. Biochem J 2006;397(2):247-59. https://doi.org/10.1042/BJ20060166
25. Nishiyama H, Itoh K, Kaneko Y, Kishishita M, Yoshida O, Fujita J. A glycine-rich RNA-binding protein mediating
cold-inducible suppression of mammalian cell growth. J Cell Biol 1997;137(4):899-908. https://doi.org/10.1083/jcb.137.4.899
26. Tong G, Endersfelder S, Rosenthal LM, Wollersheim S, Sauer IM, Bührer C, et al. Effects of moderate and deep
hypothermia on RNA-binding proteins RBM3 and CIRP expressions in murine hippocampal brain slices. Brain Res
2013; 1504:74-84. https://doi.org/10.1016/j.brainres.2013.01.041
27. Rey-Funes M, Contartese DS, Peláez R, García-Sanmartín J, Narro-Íñiguez J, Soliño M, et al. Hypothermic shock
applied after perinatal asphyxia prevents retinal damage in rats. Front Pharmacol 2021;12:651599. https://doi.org/10.3389/fphar.2021.651599
28. Larrayoz IM, Rey-Funes M, Contartese DS, Rolón F, Sarotto A, Dorfman VB, et al. Cold shock proteins are
expressed in the retina following exposure to low temperatures. PLoS One 2016;24;11(8):e0161458.
https://doi.org/10.1371/journal.pone.0161458
29. Chip S, Zelmer A, Ogunshola OO, Felderhoff-Mueser U, Nitsch C, Bührer C, et al. The RNA-binding protein
RBM3 is involved in hypothermia induced neuroprotection. Neurobiol Dis 2011;43(2):388-96. https://doi.org/10.1016/j.nbd.2011.04.010
30. Zhang H-T, Xue J-H, Zhang Z-W, Kong H-B, Liu A-J, Li S-C, et al. Cold-inducible RNA-binding protein inhibits
neuron apoptosis through the suppression of mitochondrial apoptosis. Brain Res 2015;1622:474-83. https://doi.org/10.1016/j.brainres.2015.07.004
31. Zhang Y, Wu Y, Mao P, Li F, Han X, Zhang Y, et al. Cold-inducible RNA-binding protein CIRP/hnRNP A18
regulates telomerase activity in a temperature-dependent manner. Nucleic Acids Res 2016;29;44(2):761-75.
https://doi.org/10.1093/nar/gkv1465
32. Morrison SF. Central neural control of thermoregulation and brown 5 adipose tissue. Auton Neurosci 2016;196:14-24. https://doi.org/10.1016/j.autneu.2016.02.010
33. Andrews PJ, Sinclair HL, Rodriguez A, Harris BA, Battison CG, et al. Hypothermia for intracranial hypertension
after traumatic brain injury. N Engl J Med 2015;373(25):2403-12. https://doi.org/10.1056/NEJMoa1507581
34. Choi HA, Badjatia N, Mayer SA. Hypothermia for acute brain injury--mechanisms and practical aspects. Nat Rev Neurol 2012;8(4):214-22. https://doi.org/10.1038/nrneurol.2012.21
35. Contartese DS, Rey-Funes M, Sarotto AJ, Loidl CF. Expresión de proteínas inducidas por frío (CIRP y RBM3) en
las retinas de ratas expuestas a hipotermia. LIX Reunión Científica Anual de la Sociedad Argentina de Investigación Clínica (SAIC), LXII Reunión Científica Anual de la Sociedad Argentina de Inmunología (SAI). Mar del Plata, 2014.
36. Rodrigo J, Peinado MA, Pedrosa A. Avances en inmunocitoquímica y técnicas relacionadas. Jaen: Publicaciones de la Universidad de Jaen; 1996.
37. Rodrigo J, Alonso D, Fernández AP, Serrano J, Richart A, López JC, et al. Neuronal and inducible nitric oxide
synthase expression and protein nitration in rat cerebellum after oxygen and glucose deprivation. Brain Res 2001;909(1-2):20-45. https://doi.org/10.1016/s0006-8993(01)02613-0
38. Wrathall JR. Spinal cord injury models. J Neurotrauma 1992;9(suppl 1):129-34. PMID: 1588603
39. Fehlings MG, Tator CH. A review of experimental models of acute spinal cord injury. En: Illis LS (ed). Spinal cord dysfunction: assessment. Oxford: Oxford University; 1988:3-43.
40. Poon PC, Gupta D, Shoichet MS, Tator CH. Clip compression model is useful for thoracic spinal cord injuries
histologic and functional correlates. Spine (Phila PA 1976) 2007;32(25):2853-9. https://doi.org/10.1097/BRS.0b013e31815b7e6b
41. Shoichet M, Tator CH, Poon P, Kang C, Baumann MD. Intrathecal drug delivery strategy is safe and efficacious for localized delivery to the spinal cord. Prog Brain Res 2007;161:385-92. https://doi.org/10.1016/S0079-6123(06)61027-3
42. Parent S, Mac-Thiong JM, Roy-Beaudry M, Sosa JF, Labelle H. Spinal cord injury in the pediatric population: a
systematic review of the literature. J Neurotrauma 2011;28(8):1515-24. https://doi.org/10.1089/neu.2009.1153
43. Kundi S, Bicknell R, Ahmed Z. Spinal cord injury: current mammalian models. Am J Neurosci 2013;4(1):1-12.
https://doi.org/10.3844/ajnsp.2013.1.12
44. Cambria RP, Davison JK. Regional hypothermia for prevention of spinal cord ischemic complications after
thoracoabdominal aortic surgery: experience with epidural cooling. Semin Thorac Cardiovasc Surg 1998;10(1):61-
5. https://doi.org/10.1016/s1043-0679(98)70020-6
45. Bicknell CD, Riga CV, Wolfe JH. Prevention of paraplegia during thoracoabdominal aortic aneurysm repair. Eur J Vasc Endovasc Surg 2009;37(6):654-60. https://doi.org/10.1016/j.ejvs.2009.02.008
46. Dietrich WD, III. Therapeutic hypothermia for spinal cord injury. Crit Care Med 2009;37(7 Suppl):S238-S242.
https://doi.org/10.1097/CCM.0b013e3181aa5d85
47. Lleonart ME. A new generation of proto-oncogenes: cold-inducible RNA binding proteins. Biochim Biophys Acta 2010;1805(1):43-52. https://doi.org/10.1016/j.bbcan.2009.11.001
48. Liao Y, Tong L, Tang L, Wu S. The role of cold-inducible RNA binding protein in cell stress response. Int J Cancer 2017;141(11):2164-73. https://doi.org/10.1002/ijc.30833
49. Torres Montaner A. El cuerpo accesorio de Cajal. Rev Esp Patol 2002;35(4):529-32. Disponible en:
https://www.xn--patologai2a.es/volumen35/vol35-num4/pdf%20patologia%2035-4/35-4-24.pdf
50. Bazley FA, Pashai N, Kerr CL, All AH. The effects of local and general hypothermia on temperature profiles of
the central nervous system following spinal cord injury in rats. Ther Hypothermia Temp Manag 2014;4(3):115-24.
https://doi.org/10.1089/ther.2014.0002
51. Badr El-Bialy. Hypothermia in rat: Biochemical and pathological study. Int J Cri & For Sci 2017;I:I, 22-30.
Disponible en: https://biocoreopen.org/ijcf/Hypothermia-in-Rat-Biochemical-and-Pathological-Study.php