Modelo de hipotermia experimental en murinos para estudios de lesión medular

Contenido principal del artículo

Aníbal José Sarotto
Daniela Contartese
Verónica Dorfman
Agustina Toscanini
Nicolás Scheverin
Micaela Besse
Ignacio Larráyoz
Manuel Rey-Funes
Alfredo Martínez
César Fabián Loidl

Resumen

Introducción: Los ensayos de hipotermia sistémica en murinos son costosos, debido a la complejidad de los sistemas. El objetivo de este estudio fue evaluar si el modelo de hipotermia sistémica exógena utilizado en nuestro laboratorio para la hipotermia ocular es útil para reducir significativamente la temperatura de la médula espinal en ratas adultas.
Materiales y Métodos: Se utilizaron 36 ratas Sprague-Dawley albinas macho de 60 días, distribuidas en dos grupos: grupo normotermia a 24 °C (n = 18) y grupo hipotermia (n = 18) en cámara fría a 8 °C durante 180 minutos.
Resultados: La temperatura rectal promedio fue de 37,71 ± 0,572 °C en el grupo normotermia y 34,03 ± 0,250 °C en el grupo hipotermia (p <0,0001). La temperatura medular promedio fue de 38,8 ± 0,468 °C en el grupo normotermia y de 36,4 ± 0,290 °C en el grupo hipotermia (p <0,0001).
Conclusiones: El uso de hipotermia sistémica en ratas de laboratorio parece ser un método prometedor para evaluar los mecanismos fisiológicos y patológicos que se desencadenan en la médula espinal. La exposición al frío en cámara genera hipotermia medular significativa en ratas adultas. Los resultados sugieren que podría ser un modelo adecuado de hipotermia medular de bajo costo.

Descargas

La descarga de datos todavía no está disponible.

Métricas

Cargando métricas ...

Detalles del artículo

Cómo citar
Sarotto, A. J., Contartese, D., Dorfman, V., Toscanini, A., Scheverin, N., Besse, M., Larráyoz, I., Rey-Funes, M., Martínez, A., & Loidl, C. F. (2022). Modelo de hipotermia experimental en murinos para estudios de lesión medular. Revista De La Asociación Argentina De Ortopedia Y Traumatología, 87(1), 89-94. https://doi.org/10.15417/issn.1852-7434.2022.87.1.1420
Sección
Investigación Básica
Biografía del autor/a

Aníbal José Sarotto, Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, Universidad de Buenos Aires, CONICET, Ciudad Autónoma de Buenos Aires, Argentina

Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, Universidad de Buenos Aires, CONICET, Ciudad Autónoma de Buenos Aires, Argentina

Daniela Contartese, Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, Universidad de Buenos Aires, CONICET, Ciudad Autónoma de Buenos Aires, Argentina

Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, Universidad de Buenos Aires, CONICET, Ciudad Autónoma de Buenos Aires, Argentina

Verónica Dorfman, Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina

Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina

Agustina Toscanini, Instituto Nanobiotec (UBA-Conicet), Facultad de Medicina, Universidad de Buenos Aires, CONICET, Ciudad Autónoma de Buenos Aires, Argentina

Instituto Nanobiotec (UBA-Conicet), Facultad de Medicina, Universidad de Buenos Aires, CONICET, Ciudad Autónoma de Buenos Aires, Argentina

Nicolás Scheverin, Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, Universidad de Buenos Aires, CONICET, Ciudad Autónoma de Buenos Aires, Argentina

Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, Universidad de Buenos Aires, CONICET, Ciudad Autónoma de Buenos Aires, Argentina

Micaela Besse, Unidad de Patología Espinal, Servicio de Ortopedia y Traumatología, Hospital General de Agudos “Carlos G. Durand”, Ciudad Autónoma de Buenos Aires, Argentina

Médica Residente de 3.er año de la Unidad de Patología Espinal, Servicio de Ortopedia y Traumatología, Hospital General de Agudos “Carlos G. Durand”, Ciudad Autónoma de Buenos Aires, Argentina

Ignacio Larráyoz, Angiogenesis Study Group, Center for Biomedical Research of La Rioja (CIBIR), Logroño, España

Angiogenesis Study Group, Center for Biomedical Research of La Rioja (CIBIR), Logroño, España

Manuel Rey-Funes, Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, Universidad de Buenos Aires, CONICET, Ciudad Autónoma de Buenos Aires, Argentina

Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, Universidad de Buenos Aires, CONICET, Ciudad Autónoma de Buenos Aires, Argentina

Alfredo Martínez, Angiogenesis Study Group, Center for Biomedical Research of La Rioja (CIBIR), Logroño, España

Angiogenesis Study Group, Center for Biomedical Research of La Rioja (CIBIR), Logroño, España

César Fabián Loidl, Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, Universidad de Buenos Aires, CONICET, Ciudad Autónoma de Buenos Aires, Argentina

Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, Universidad de Buenos Aires, CONICET, Ciudad Autónoma de Buenos Aires, Argentina

Citas

1. Dorfman VB, Rey-Funes M, Bayona JC, López EM, Coirini H, Loidl CF. Nitric oxide system alteration at spinal
cord as a result of perinatal asphyxia is involved in behavioral disabilities: hypothermia as preventive treatment. J
Neurosci Res 2009;87(5):1260-9. https://doi.org/10.1002/jnr.21922

2. Loidl CF, De Vente J, van Dijk E, Vles SH, Steinbusch H, Blanco C. Hypothermia during or after severe perinatal
asphyxia prevents increase in cyclic GMP-related nitric oxide levels in the newborn rat striatum. Brain Res
1998;791(1-2):303-7. https://doi.org/10.1016/s0006-8993(98)00195-4

3. Rey-Funes M, Ibarra ME, Dorfman VB, Loidl CF, Serrano J, Fernándes AP, et al. Hypothermia prevents nitric oxide system changes in retina induced by severe perinatal asphyxia. J Neurosci Res 2011;89(5):729-43.
https://doi.org/10.1002/jnr.22556

4. Rey-Funes M, Dorfman VB, Ibarra ME, Peña E, Contartese DS, et al. Hypothermia prevents gliosis and
angiogenesis development in an experimental model of ischemic proliferative retinopathy. Invest Ophthalmol Vis Sci 2013;54(4):2836-46. https://doi.org/10.1167/iovs.12-11198

5. Larrayoz IM, Rey-Funes M, Contartese DS, Rolón F, Sarotto A, et al. Cold shock proteins are expressed in the
retina following exposure to low temperatures. PLoS One 2016;11(8):e0161458. https://doi.org/10.1371/journal.pone.0161458

6. National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory
Animals. Guide for the Care and Use of Laboratory Animals. 8th ed. Washington (DC): National Academies Press
(US); 2011. PMID: 21595115

7. Reglamento para el cuidado y uso de animales de laboratorio en la Universidad de Buenos Aires. CICUAL.
[Consulta: marzo 2019] Disponible en: https://www.fmed.uba.ar/sites/default/files/2018-04/Reglamento%20UBA_0.pdf

8. Busto R, Dietrich WD, Globus MY, Valdes I, Scheinberg P, Ginsberg MD. Small differences in intraischemic brain
temperature critically determine the extent of ischemic neuronal injury. J Cereb Blood Flow Metab 1987;7(6):29-38. https://doi.org/10.1038/jcbfm.1987.127

9. Horiuchi T, Kawaguchi M, Kurita N, Inoue S, Nakamura M, et al. The long-term effects of mild to moderate
hypothermia on gray and white matter injury after spinal cord ischemia in rats. Anesth Analg 2009;109(2):559-66.
https://doi.org/10.1213/ane.0b013e3181aa96a1

10. Beckman JS, Koppenol WH, Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol 1996;271(5 Pt 1):C1424-37. https://doi.org/10.1152/ajpcell.1996.271.5.C1424

11. Bazley FA, Pashai N, Kerr CL, All AH. The effects of local and general hypothermia on temperature profiles of
the central nervous system following spinal cord injury in rats. Ther Hypothermia Temp Manag 2014;4(3): 115-24.
https://doi.org/10.1089/ther.2014.0002

12. Badr El-Bialy, Shaimaa Abu Zaid, Nermeen El-Borai, Anis Zaid, Amanallah El-Bahrawy. Hypothermia in rat:
Biochemical and pathological study. Int J Cri For Sci 2017;1(1):22-30. [Consulta: marzo 2019] Disponible en:
https://biocoreopen.org/ijcf/Hypothermia-in-Rat-Biochemical-and-Pathological-Study.php

13. Liu P, Yang R, Zuo Z. Application of a novel rectal cooling device in hypothermia therapy after cerebral hypoxiaischemia in rats. BMC Anesthesiol 2016;16:77. https://doi.org/10.1186/s12871-016-0239-5

14. Azzopardi DV, Strohm B, Edwards AD, Dyet L, Halliday HL, Juszczak E, et al. Moderate Hypothermia to treat
perinatal asphyxia encephalopathy. N Engl J Med 2009;361(14):1349-58. https://doi.org/10.1056/NEJMoa0900854

15. Battin MR, Penrice J, Gunn TR, Gunn AJ. Treatment of term infants with head cooling and mild systemic
hypothermia (35 degrees C and 34,5 degrees C) after perinatal asphyxia. Pediatrics 2003;111(2):244-51.
https://doi.org/10.1542/peds.111.2.244

16. Dietrich WD, Levi AD, Wang M, Green BA. Hypothermic treatment for acute spinal cord injury. Neurotherapeutics 2011;8(2):229-39. https://doi.org/10.1007/s13311-011-0035-3

17. Tay Bobby K-B, Eismont FJ. Injuries of the upper cervical spine. En: Herkowitz HN. Rothman-Simeone The Spine, 5th ed. Philadelphia: Saunders; 1980, vol. II, cap. 67, págs. 1073-99.

18. Videla N, Steverlynck A, Castelli R, Sarotto AJ, Sbrero D, Scheveri N, et al. Incidencia de lesiones espinales
en accidentes de tránsito. Nuestra experiencia, análisis y conclusiones sobre la prevalencia de lesiones por
motocicletas. XVIII Congreso Argentino de la Sociedad Argentina de Patología de la Columna Vertebral, Córdoba,
Argentina, 2014.

19. Cambria RP, Davison JK. Regional hypothermia for prevention of spinal cord ischemic complications after
thoracoabdominal aortic surgery: experience with epidural cooling. Semin Thorac Cardiovasc Surg 1998;10(1):61-
5. https://doi.org/10.1016/s1043-0679(98)70020-6

20. Choi R, Andres RH, Steinberg GK, Guzman R. Intraoperative hypothermia during vascular neurosurgical
procedures. Neurosurg Focus 2009;26(5):E24. https://doi.org/10.3171/2009.3.FOCUS0927

21. Lo TP, Cho K-S, Garg MS, Lynch MP, Marcillo AE, Koivisto DL, et al. Systemic hypothermia improves histological and functional outcome after cervical spinal cord contusion in rats. J Comp Neurol 2009;514(5):433-48. https://doi.org/10.1002/cne.22014

22. Shibuya S, Miyamoto O, Janjua NA, Itano T, Mori S, Horimatsu H. Post-traumatic moderate systemic hypothermia reduces TUNEL positive cells following spinal cord injury in rat. Spinal Cord 2004;42(1):29-34.
https://doi.org/10.1038/sj.sc.3101516

23. Morrison SF. Central neural control of thermoregulation and brown adipose tissue. Auton Neurosci 2016;196:14-24. https://doi.org/10.1016/j.autneu.2016.02.010

24. Andrews PJ, Sinclair HL, Rodriguez A, Harris BA, Battison CG, Rhodes JKJ, et al. Hypothermia for Intracranial
Hypertension after Traumatic Brain Injury. N Engl J Med 2015;373(25):2403-12. https://doi.org/10.1056/NEJMoa1507581

25. Dingley J, Liu X, Gill H, Smit E, Sabir H, Tooley J, et al. The feasibility of using a portable xenon delivery device
to permit earlier xenon ventilation with therapeutic cooling of neonates during ambulance retrieval. Anesth Analg 2015;120(6):1331-6. https://doi.org/10.1213/ANE.0000000000000693

Artículos más leídos del mismo autor/a