Differences among membranes induced by different implants and cements. Experimental study

Main Article Content

Esteban Andrés Lobos Centeno
Fernando Vanoli
Pablo López
Martín Mangupli
Christian Antonio Allende Nores

Abstract

Background: The objective of this study is to analyze and compare the characteristics of the membranes that form around cement spacers; as well as the one that develops around titanium and steel implants.Materials and Methods: 20 rabbits were divided into 2 groups of 10. In Group 1, an antibiotic-coated cement spacer was placed on the right femur, and a titanium elastic nail (TEN) on the left one. In Group 2, an antibiotic/steroid-coated cement spacer was placed on the right femur, and a steel peg on the left one. At 6 weeks, the membranes were removed and its macroscopic, imaging, biochemical and histological characteristics were evaluated.Results: Macroscopy: The membrane induced by the ATB-coated cement spacer was significantly wider, whereas the one induced by the steroid-coated cement spacer and the TEN was very thin and adherent. Microscopy: The membrane induced by the steroid-coated cement spacer showed less inflammation (p = 0.0502) and was similar to the one induced by the steel peg (p = 0.322). Steel pegs showed greater epithelial proliferation (p = 0.026), which was scarce on the membrane induced by the steroid-coated cement spacer (p = 0.071). There was a mild tendency towards less active vascular proliferation (p = 0.107) in the group of the steroid-coated cement spacer vs. the one without steroids. There were no differences between the steel peg and the TEN (p = 0.737). X-rays and CT showed no significant differences (p = 0.988). In MRIs, most of the responses indicated lack of osseointegration in the steel peg group due to metallic artifacts.Conclusions: Different materials (titanium, steel and cement) with different agents added to them (antibiotics and steroids), alter the membranes both macroscopically and histologically. The steroidcoated cement spacer showed less inflammation and fibrosis, less vascular proliferation, and thinner and adherent membranes.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
Lobos Centeno, E. A., Vanoli, F., López, P., Mangupli, M., & Allende Nores, C. A. (2019). Differences among membranes induced by different implants and cements. Experimental study. Revista De La Asociación Argentina De Ortopedia Y Traumatología, 84(3), 286-295. https://doi.org/10.15417/issn.1852-7434.2019.84.3.933
Section
Basic Research
Author Biographies

Esteban Andrés Lobos Centeno, Sanatorio Allende, Córdoba, Argentina

Servicio de Ortopedia y Traumatología - Sanatorio Allende, Córdoba, Argentina

Fernando Vanoli, Sanatorio Allende, Córdoba, Argentina

Servicio de Ortopedia y Traumatología - Sanatorio Allende, Córdoba, Argentina

Pablo López, Sanatorio Allende, Córdoba, Argentina

Servicio de Ortopedia y Traumatología - Sanatorio Allende, Córdoba, Argentina

Martín Mangupli, Sanatorio Allende, Córdoba, Argentina

Servicio de Ortopedia y Traumatología - Sanatorio Allende, Córdoba, Argentina

Christian Antonio Allende Nores, Sanatorio Allende, Córdoba, Argentina

Servicio de Ortopedia y Traumatología - Sanatorio Allende, Córdoba, Argentina

References

1. McBride-Gagyi S, Toth Z, Kim D, Ip V, Evans E, Watson T, et al. Altering spacer material affects bone regeneration in the Masquelet technique in a rat femoral defect. J Orthop Res 2018. https://doi.org/10.1002/jor.23866

2. Ward K. A review of the foreign body response to subcutaneously implanted devices: the role of macrophages and cytokines in biofouling and fibrosis. J Diabetes Sci Technol 2008;2:768-77. https://doi.org/10.1177/193229680800200504

3. Aho OM, Lehenkari P, Ristiniemi J, Lehtonen S, Risteli J, Leskeiä HV. The mechanism of action of induced membranes in bone repair. J Bone Joint Surg Am 2013;95(7):597-604. https://doi.org/10.2106/JBJS.L.00310

4. Allende C. Cement spacers with antibiotics for the treatment of posttraumatic infected nonunions and bone defects of the upper extremity. Tech Hand Surg 2010;14:241-7. https://doi.org/10.1097/BTH.0b013e3181f42bd3

5. Nau C, Seebach C, Trumma A, Schaible A, Kontradowitz K, Meier S, et al. Alteration of Masquelet’s induced membrane characteristics by different kinds of antibiotic enriched bone cement in a critical size defect model in the rat’s femur. Injury 2016;47:325-34. https://doi.org/10.1016/j.injury.2015.10.079

6. Masquelet AC. The evolution of the induced membrane technique: current status and future directions. Tech Orthop 2016;31:3-8. https://doi.org/10.1097/BTO.0000000000000160

7. Richards RG, Quen GR, Rahn BA, Gwynn I. A quantitative method of measuring cell adhesion areas (review). Cells Mater 1997;7:15-30. https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=1156&context=cellsandmaterials

8. Perren SM, Regazzoni P, Fernandez AA. How to choose between the implant materials steel and titanium in orthopaedic trauma surgery: Part 2 – biological aspects. Acta Chir Orthop Traumatol Cech 2017;84:85-90. http://www.achot.cz/dwnld/achot_2017_2_085_090.pdf

9. Perren SM, Regazzoni P, Fernandez AA. How to choose between the implant materials steel and titanium in orthopaedic trauma surgery: Part 1 – biological aspects. Acta Chir Orthop Traumatol Cech 2017;84:9-12. http://www.achot.cz/dwnld/achot_2017_1_009_012.pdf

10. Ring D, Jupiter JB, Quintero J, Sanders RA, Marti RK. Atrophic ununited fractures of the humerus with a bony defect: treatment by wave-plate osteosynthesis. J Bone Joint Surg Br 2000;82:867-71. https://doi.org/10.1302/0301-620X.82B6.0820867

11. Lasanianos NG, Kanakaris NK, Giannoudis PV. Current management of long bone large segmental defects. Orthop Trauma 2010;24:149-63. https://doi.org/10.1002/jor.23845

12. Mauffrey C, Barlow BT, Smith W. Management of segmental bone defects. J Am Acad Orthop Surg 2015;23:143-53. https://doi.org/10.5435/JAAOS-D-14-00018

13. Lazzarini L, Mader J, Calhoun J. Osteomyelitis in long bones. J Bone Joint Surg Am 2004;86:2305-18. https://jbjs.org/reader.php?

14. Agner J, Kyle B, Cierny G, Webb L. Diagnosis and management of chronic infection. J Am Acad Orthop Surg 2011;19:8-19. https://journals.lww.com/jaaos/Fulltext/2011/02001/Diagnosis_and_Management_of_Chronic_Infection.3.aspx

15. Fleming M, Watson T, Gaines R, O’Toole R. Evolution of orthopaedic reconstructive care. Am Acad Orthop Surg 2012;20:74-9. https://doi.org/10.5435/JAAOS-20-08-S74

16. Pelissier P, Boireau P, Martin D, Baudet J. Bone reconstruction of the lower extremity: complications and outcomes. Plast Reconstr Surg 2003;111:2223-9. https://doi.org/10.1097/01.PRS.0000060116.21049.53

17. Riley EH, Lane JM, Urist MR, Lyons KM, Lieberman JR. Bone morphogenetic protein-2: biology and applications. Clin Orthop Relat Res 1996;324:39-46. PMID: 8595775

18. Pipitone PS, Rehman S. Management of traumatic bone loss in the lower extremity. Orthop Clin North Am 2014;45:469-82. https://doi.org/10.1016/j.ocl.2014.06.008

19. Cuthbert RJ, Churchman SM, Tan HB, McGonagle D, Jones E, Giannoudis PV. Induced periosteum a complex cellular scaffold for the treatment of large bone defects. Bone 2013;57:484-92. https://doi.org/10.1016/j.bone.2013.08.009

20. Pelissier A, Masquelet R, Bareille S, Mathoulin Pelissier S, Amedee J. Induced membranes secrete growth factors including vascular and osteoinductive factors and could stimulate bone regeneration. J Orthop Research 2004;22:73-9. https://doi.org/10.1016/S0736-0266(03)00165-7

21. Gupta G, Ahmad S, Zahid M, Khan AH, Sherwani MK, Khan AQ. Management of traumatic tibial diaphyseal bone defect by “induced-membrane technique”. Indian J Orthop 2016;50:290-296. https://doi.org/10.4103/0019-5413.181780

22. Ambrose CG, Clyburn TA, Louden K, Joseph J, Wright J, Gulati P, et al. Effective treatment of osteomyelitis with biodegradable microspheres in a rabbit model. Clin Orthop Relat Res 2004;421:293-9. https://doi.org/10.1097/01.blo.0000126303.41711.a2

23. Luangphakdy V, Pluhar E, Piuzzi NS, D’Alleyrand JC, Carlson CS, Bechtold JE, et al. The effect of surgical technique and spacer texture on bone regeneration: A caprine study using the Masquelet technique. Clin Orthop Relat Res 2017;475:2575-85. https://doi.org/10.1007/s11999-017-5420-8

24. DeCoster T, Gehlert R, Mikola E, Pirela-Cruz M. Management of posttraumatic segmental bone defects. J Am Acad Orthop Surg 2004;12:28-38. https://journals.lww.com/jaaos/Fulltext/2004/01000/Management_of_Posttraumatic_Segmental_Bone_Defects.5.aspx

25. Pelissier Ph, Masquelet AC, Lepreux S, Martin D, Baudet J. Behavior of cancellous bone graft placed in induced membranes. Br J Plast Surg 2002;55:598-600. https://doi.org/10.1054/bjps.2002.3936

26. Corona PS, Barro V, Mendez M, Cáceres E, Flores X. Industrially prefabricated cement spacers: do vancomycin and gentamicin-impregnated spacers offer any advantage? Clin Orthop Relat Res 2014;472:923-32. https://doi.org/10.1007/s11999-013-3342-7

27. Rathbone CR, Cross JD, Brown KV, Murray CK, Wenke JC. Effect of various concentrations of antibiotics on osteogenic cell viability and activity. J Orthop Res 2011;29:1070-4. https://doi.org/10.1002/jor.21343

28. Arens S, Schlegel U, Printzen G, Ziegler WJ, Perren SM, Hansis M. Influence of the materials for fixation implants on local infection. An experimental study of steel versus titanium DC-plates in rabbits. J Bone Joint Surg 1996;78:647-51. https://doi.org/10.1302/0301-620X.78B4.0780647

29. Hauke C, Schlegel U, Melcher GA, Printzen G, Perren SM. Local infection in relation to different implant materials. An experimental study using stainless steel and titanium solid, unlocked, intramedullary nails in rabbit. Orthop Trans 1997;21:835-83.

30. Ungersboeck A, Geret V, Pohler O, Schuetz M, Wuest W. Tissue reaction to bone plates made of pure titanium: a prospective, quantitative clinical study. J Mater Sci Mater Med 1995;6:223-9. https://doi.org/10.1007/BF00146860

Most read articles by the same author(s)