Scaffold for bone tissue engineering: superficial modification with zinc. Preliminary study

Main Article Content

Cristian Martínez
Daniel Olmedo
Andrés Ozols

Abstract

The aim of this study is to develop a method of matrix synthesis for tissue engineering, capable of accelerating reparative processes and reducing the risk of infection, destined to reconstructive surgeries involving bone tissue. For this purpose the bovine bone mineral phase, hydroxyapatite, was used while retaining its dimensional structure. This is obtained from a chemical wash process followed by a thermal process that removes the entire organic components. This matrix is superficially modified with zinc oxide (ZnO), element known for its action in various biological processes and its antibacterial action. The procedure involves the intrusion of ZnO dispersions in alcohol solution-1,2,3-propanetriol, made in a thermal bath and the subsequent high temperature sintering. The degree of attachment and the Zn concentration on the hydroxyapatite matrix is determined by electron microscopy and energy spectrometry. X-ray diffraction shows that the incorporation of Zn ions in the surface forms Zn phosphates. The developed original process allows modifying in a simple way synthetic bone grafts, by providing antibacterial and osteoproliferative properties to the osteoconductive substrate.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
Martínez, C., Olmedo, D., & Ozols, A. (2013). Scaffold for bone tissue engineering: superficial modification with zinc. Preliminary study. Revista De La Asociación Argentina De Ortopedia Y Traumatología, 78(3), 138 - 143. https://doi.org/10.15417/264
Section
Basic Research
Author Biographies

Cristian Martínez, Facultad de Odontologia- Universidad Nacional de Cuyo

Especialista en  Cirugía Maxilofacial.Becario Doctoral de la Agencia Nacional de Promoción Científica y Tecnológica. Ministerio de Ciencia, Tecnología e Innovación Productiva (MinCyT).Becario de la Facultad de Odontología. Universidad Nacional de Cuyo. Argentina.Miembro del Grupo de Biomateriales para Prótesis* Facultad de Ingeniería. Universidad de Buenos Aires. Argentina.

Daniel Olmedo, Facultad de Odontologia- Universidad de Buenos Aires

Doctor en Odontología.  Facultad de Odontología. Universidad Nacional de Córdoba.Profesor Regular Adjunto con Dedicación Exclusiva. Cátedra de Anatomía Patológica. Facultad de Odontología. Universidad de Buenos Aires.Investigador Adjunto. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Especialista en Anatomía Patológica Bucal. Facultad de Odontología. Universidad de Buenos Aires.

Andrés Ozols, Facultad de Ingeniería - Universidad de Buenos Aires

Doctor en Ciencias Físicas. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires (F.C.E.y N.). Profesor Regular Adjunto con Dedicación Exclusiva de Física III-A. Investigador de la Universidad de Buenos Aires. Director del Grupo de Biomateriales para prótesis.* Facultad de Ingeniería. Universidad de Buenos Aires.Centro de innovación y desarrollo de Biomateriales de Riga (RBIAC). Universidad Tecnológica de Riga (Letonia, Comunidad Europea.

References

1. Henkel K, Gerber T, Dörfling P, Gundlach K, Bienengräber V. Repair of bone defects by applying biomatrices with and without autologous osteoblasts. J Craniomaxillofac Surg 2005;33:45-9.

2. Liu C, Xia Z, Czernuszka JT. Design and development of three-dimensional scaffolds for tissue engineering. Chem Eng Research Design 2007;85:1051-64.

3. Dorozhkin SV. Bioceramics of calcium orthophosphates. Biomaterials 2010;31:1465-85.

4. Ronen A, Semiat R, Dosoretz CG. Antibacterial efficiency of a composite spacer containing zinc oxide nanoparticles. Proc Engineering 2012;44:581-2.

5. Wang T, Zhang J, Chen Y, Xiao P, Yang M. Effect of zinc ion on the osteogenic and adipogenic differentiation of mouse primary bone marrow stromal cells and the adipocytic trans-differentiation of mouse primary osteoblasts. J Trace Elem Med Biol 2007;21:84-91.

6. Hie M, Iitsuka N, Otsuka T, Nakanishi A, Tsukamoto I. Zinc deficiency decreases osteoblasts and osteoclasts associated with the reduced expression of Runx2 and RANK. Bone 2011;49:1152-9.

7. Yang L, Perez-Amodio S, Barrère-de Groot F, Everts V, Blitterswijk C, Habibovic P. The effects of inorganic additives to calcium phosphate on in vitro behavior of osteoblasts and osteoclasts. Biomaterials 2010;31:2976-89.

8. Peretz A, Papadopoulos T, Willems D, Hotimsky A, Michiels N, Siderova V, et al. Zinc supplementation increases bone alkaline
phosphatase in healthy men. J Trace Elem Med Biol 2001;15:175-8.

9. Ito A, Otsuka M, Kawamura H, Ikeuchi M, Ohgushi H, Sogo Y, Ichinose N. Zinc-containing tricalcium phosphate and related materials for promoting bone formation. Current Applied Physics 2005;5:402-6.

10. Storrie H, Stupp S. Cellular response to zinc-containing organoapatite: An in vitro study of proliferation, alkaline phosphatase
activity and biomineralization. Biomaterials 2005;26:5492-9.

11. Wanga X, Ito A, Sogo Y, Li X, Oyane A. Zinc-containing apatite layers on external fixation rods promoting cell activity. Acta Biomaterialia 2010;6:962-8.

12. Nagata M, Lönnerdal B. Role of zinc in cellular zinc trafficking and mineralization in a murine osteoblast-like cell line. J Nutr Biochem 2011;22:172-8.

13. Toledano M, Yamauti M, Ruiz-Requena ME, Osorio R. A ZnO-doped adhesive reduced collagen degradation favouring dentine remineralization. J Dent 2012;40:756-65.

Pawlig O, Trettin R. Synthesis and characterization of α-hopeite, Zn3 (PO4)2.4H2O. Materials Research Bulletin 1999;34:1959-66.

15. Chao GY. Refinement of the crystal structure of parahopeite. Zeits Krist 1969;130:261-6.

16. Anusavice KJ. Dental cements for bonding applications. En: Anusavice KJ, Phillips RW. Phillips’ Science of Dental Materials, 11a ed. Philadelphia: Saunders; 2003:565-7.

17. Gomes S, Nedelec JM, Renaudin G. On the effect of temperature on the insertion of zinc into hydroxyapatite. Acta Biomater 2012;35:1180-9.

18. Mayer I, Featherstone JD. Dissolution studies of Zn-containing carbonated hydroxyapatites. J Crystal Growth 2000;219:98-101.

19. Ito A, Ojima K, Naito H, Ichinose N, Tateisshi N. Preparation, solubility, and cytocompatibility of zinc-releasing calcium phosphate ceramics. J Biomed Mater Res 2000;50:178-83.

20. Bandyopadhyay A, Withey EA, Moore J, Susmita B. Influence of ZnO doping in calcium phosphate ceramics. Materials Science and Engineering 2007;27:14-17.