Non-Tuberculous Gibbus Deformity, Treated With an Implant Coated With Silver Nanoparticles. Presentation of a Case

Main Article Content

Diego Fabio Jacob
Joint Halley Guimbard Perez
Luis David Enrique Orosco Falcone
Juan Carlos Carabajal
Pablo Nicolás Ortiz

Abstract

Gibbus disease is the collapse of the anterior portion of one or more vertebral bodies that results in acute angle segmental kyphosis. Generally, these types of deformities are caused by tuberculosis infections. One of the main problems associated with this deformity is spinal compression. In this case, the patient presented this condition as a consequence of a non-tuberculous infection, with angular kyphosis after osteomyelitis, treated with a double approach, using implants coated with silver nanoparticles. We obtained very satisfactory clinical and radiological outcomes. This case presents the intersection of two rare topics in current medicine; on the one hand, a type of spinal deformity that rarely occurs as a consequence of a non-tuberculous infection. On the other hand, the implant used, coated with silver nanoparticles. Although there are still controversies in the literature, this implant offers a new possibility of treatment for patients who are at increased risk of implant-related infection, and it is of interest for orthopedic surgeons, since there is sufficient evidence to support its ability to reduce the formation of biofilms.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
Jacob, D. F., Guimbard Perez, J. H., Orosco Falcone, L. D. E., Carabajal, J. C., & Ortiz, P. N. (2021). Non-Tuberculous Gibbus Deformity, Treated With an Implant Coated With Silver Nanoparticles. Presentation of a Case. Revista De La Asociación Argentina De Ortopedia Y Traumatología, 86(6), 802-811. https://doi.org/10.15417/issn.1852-7434.2021.86.6.1074
Section
Case Presentations
Author Biographies

Diego Fabio Jacob, Spinal Surgery Department, Orthopedics and Traumatology Service, Sanatorio Allende, Córdoba, Argentina

Spinal Surgery Department, Orthopedics and Traumatology Service, Sanatorio Allende, Córdoba, Argentina

Joint Halley Guimbard Perez, Spinal Surgery Department, Orthopedics and Traumatology Service, Sanatorio Allende, Córdoba, Argentina

Spinal Surgery Department, Orthopedics and Traumatology Service, Sanatorio Allende, Córdoba, Argentina

Luis David Enrique Orosco Falcone, Spinal Surgery Department, Orthopedics and Traumatology Service, Sanatorio Allende, Córdoba, Argentina

Spinal Surgery Department, Orthopedics and Traumatology Service, Sanatorio Allende, Córdoba, Argentina

Juan Carlos Carabajal, Spinal Surgery Department, Orthopedics and Traumatology Service, Sanatorio Allende, Córdoba, Argentina

Spinal Surgery Department, Orthopedics and Traumatology Service, Sanatorio Allende, Córdoba, Argentina

Pablo Nicolás Ortiz, Spinal Surgery Department, Orthopedics and Traumatology Service, Sanatorio Allende, Córdoba, Argentina

Head of the Spinal Surgery Department, Orthopedics and Traumatology Service, Sanatorio Allende, Córdoba, Argentina

References

1. Ghandi M, Aycock RD, Berwald N, Hahn B. Gibbus deformity. J Emerg Med 2015;49(3):340-1.
https://doi.org/10.1016/j.jemermed.2015.04.004

2. Merriam-Webster. Gibbous. En: Merriam-Webster.com dictionary. Disponible en:
https:// www.merriam-webster.com/dictionary/gibbous

3. Palmucci S, Attinà G, Lanza ML, Belfiore G, Cappello G, Foti PV, et al. Imaging findings of mucopolysaccharidoses: a pictorial review. Insights Imaging 2013;4(4):443-59. https://doi.org/10.1007/s13244-013-0246-8

4. Seksenyan A, Esfahani DR, Hu K, Mehta AI. Gibbus deformity after non-tuberculosis osteomyelitis. J Spine Surg
2017;3(4):736-9. https://doi.org/10.21037/jss.2017.12.02

5. Maciejczak A, Wolan-Nieroda A, Wałaszek M, Kołpa M, Wolak Z. Antibiotic prophylaxis in spine surgery: a
comparison of single-dose and 72-hour protocols. J Hosp Infect 2019;103(3):303-10. https://doi.org/10.1016/j.jhin.2019.04.017

6. Götz F. Staphylococcus and biofilms. Mol Microbiol 2002;43(6):1367-78.
https://doi.org/10.1046/j.1365-2958.2002.028276.x

7. Kristian SA, Birkenstock TA, Sauder U, Mack D, Götz F, Landmann R. Biofilm formation induces C3a release and
protects Staphylococcus epidermidis from IgG and complement deposition and from neutrophil-dependent killing. J Infect Dis 2008;197(7):1028-35. https://doi.org/10.1086/528992

8. Qing Y, Cheng L, Li R, Liu G, Zhang Y, Tang X, et al. Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. Int J Nanomedicine 2018;13:3311-27. https://doi.org/10.2147/IJN.S165125

9. Jung-Hee Lee, Hyun-Seok Oh, Jeong-Gyu Choi. Comparison of the posterior vertebral column resection
with the expandable cage versus the nonexpandable cage in thoracolumbar angular kyphosis. Clin Spine Surg
2017;30(4):E398-E406. https://doi.org/10.1097/BSD.0000000000000236

10. Iyer S, Lenke LG, Nemani VM, Albert VM, Sides A, Metz LN, et al. Variations in sagittal alignment parameters
based on age: a prospective study of asymptomatic volunteers using full-body radiographs. Spine (Phila Pa 1976) 2016;41(23):1826-36. https://doi.org/10.1097/BRS.0000000000001642

11. Noshchenko A, Hoffecker L, Cain CMJ, Patel VV, Burger EL. Spinopelvic parameters in asymptomatic subjects
without spine disease and deformity: a systematic review with meta-analysis. Clin Spine Surg 2017;30(9):392-403.
https://doi.org/10.1097/BSD.0000000000000533

12. Schroeder N, Noschenko A, Burger E, Patel V, Cain C, Ou-Yang D, et al. Pelvic incidence changes between flexion and extension. Spine Deform 2018;6(6):753-61. https://doi.org/10.1016/j.jspd.2018.03.008

13. Winter RB. Congenital scoliosis. Clin Orthop Relat Res 1973;93:75-94. Disponible en: https://journals.lww.com/clinorthop/Citation/1973/06000/Congenital_Scoliosis.10.aspx

14. Böhm H, Harms J, Donk R, Zielke K. Correction and stabilization of angular kyphosis. Clin Orthop Relat Res
1990;(258):56-61. PMID: 2394059

15. van Hengel IAJ, Riool M, Fratila-Apachitei LE, Witte-Bouma J, Farrell E, Zadpoor AA, et al. Selective laser
melting porous metallic implants with immobilized silver nanoparticles kill and prevent biofilm formation by
methicillin-resistant Staphylococcus aureus. Biomaterials 2017;140:1-15. https://doi.org/10.1016/j.biomaterials.2017.02.030

16. Rizzello L, Pompa PP. Nanosilver-based antibacterial drugs and devices: mechanisms, methodological drawbacks, and guidelines. Chem Soc Rev 2014;43(5):1501-18. https://doi.org/10.1039/c3cs60218d

17. Hazer DB, Sakar M, Dere Y, Altınkanat G, Ziyal MI, Hazer B. Antimicrobial effect of polymer-based silver
nanoparticle coated pedicle screws: experimental research on biofilm inhibition in rabbits. Spine (Phila Pa 1976)
2016;41(6):E323-9. https://doi.org/10.1097/BRS.0000000000001223

18. Hegde V, Park HY, Dworsky E, Zoller SD, Xi W, Johansen DO, et al. The use of a novel antimicrobial implant
coating in vivo to prevent spinal implant infection. Spine (Phila Pa 1976) 2020;45(6):E305-E311.
https://doi.org/10.1097/BRS.0000000000003279

19. Amin Yavari S, Loozen L,, Paganelli FL, Bakhshandeh S, Lietaert K, Groot JA, et al. Antibacterial behavior
of additively manufactured porous titanium with nanotubular surfaces releasing silver ions. ACS Appl Mater
Interfaces 2016;8(27):17080-9. https://doi.org/10.1021/acsami.6b03152

20. Albers CE, Hofstetter W, Siebenrock KA, Landmann R, Klenke FM. In vitro cytotoxicity of silver nanoparticles
on osteoblasts and osteoclasts at antibacterial concentrations. Nanotoxicology 2013;7(1):30-6.
https://doi.org/10.3109/17435390.2011.626538

21. Chernousova S, Epple M. Silver as antibacterial agent: ion, nanoparticle, and metal. Angew Chem Int Ed Engl
2013;52(6):1636-53. https://doi.org/10.1002/anie.201205923

22. Hardes J, Ahrens H, Gebert C, Streitbuerger A, Buerger H, Erren M, et al. Lack of toxicological side-effects in
silver-coated megaprostheses in humans. Biomaterials 2007;28(18):2869-75. https://doi.org/10.1016/j.biomaterials.2007.02.033

23. Ahamed M, Alsalhi MS, Siddiqui MKJ. Silver nanoparticle applications and human health. Clin Chim Acta
2010;411(23-24):1841-48. https://doi.org/10.1016/j.cca.2010.08.016

24. Asharani PV, Lianwu Y, Gong Z, Valiyaveettil S. Comparison of the toxicity of silver, gold and platinum
nanoparticles in developing zebrafish embryos. Nanotoxicology 2011;5(1):43-54. https://doi.org/10.3109/17435390.2010.489207