Diferencias entre las membranas inducidas por diferentes implantes y cementos. Estudio experimental. [Differences among membranes induced by different implants and cements. Experimental study]
Contenido principal del artículo
Resumen
Descargas
Métricas
Detalles del artículo
La aceptación del manuscrito por parte de la revista implica la no presentación simultánea a otras revistas u órganos editoriales. La RAAOT se encuentra bajo la licencia Creative Commons 4.0. Atribución-NoComercial-CompartirIgual (http://creativecommons.org/licenses/by-nc-sa/4.0/deed.es). Se puede compartir, copiar, distribuir, alterar, transformar, generar una obra derivada, ejecutar y comunicar públicamente la obra, siempre que: a) se cite la autoría y la fuente original de su publicación (revista, editorial y URL de la obra); b) no se usen para fines comerciales; c) se mantengan los mismos términos de la licencia.
En caso de que el manuscrito sea aprobado para su próxima publicación, los autores conservan los derechos de autor y cederán a la revista los derechos de la publicación, edición, reproducción, distribución, exhibición y comunicación a nivel nacional e internacional en las diferentes bases de datos, repositorios y portales.
Se deja constancia que el referido artículo es inédito y que no está en espera de impresión en alguna otra publicación nacional o extranjera.
Por la presente, acepta/n las modificaciones que sean necesarias, sugeridas en la revisión por los pares (referato), para adaptar el trabajo al estilo y modalidad de publicación de la Revista.
Citas
2. Ward K. A review of the foreign body response to subcutaneously implanted devices: the role of macrophages and cytokines in biofouling and fibrosis. J Diabetes Sci Technol 2008;2:768-77. https://doi.org/10.1177/193229680800200504
3. Aho OM, Lehenkari P, Ristiniemi J, Lehtonen S, Risteli J, Leskeiä HV. The mechanism of action of induced membranes in bone repair. J Bone Joint Surg Am 2013;95(7):597-604. https://doi.org/10.2106/JBJS.L.00310
4. Allende C. Cement spacers with antibiotics for the treatment of posttraumatic infected nonunions and bone defects of the upper extremity. Tech Hand Surg 2010;14:241-7. https://doi.org/10.1097/BTH.0b013e3181f42bd3
5. Nau C, Seebach C, Trumma A, Schaible A, Kontradowitz K, Meier S, et al. Alteration of Masquelet’s induced membrane characteristics by different kinds of antibiotic enriched bone cement in a critical size defect model in the rat’s femur. Injury 2016;47:325-34. https://doi.org/10.1016/j.injury.2015.10.079
6. Masquelet AC. The evolution of the induced membrane technique: current status and future directions. Tech Orthop 2016;31:3-8. https://doi.org/10.1097/BTO.0000000000000160
7. Richards RG, Quen GR, Rahn BA, Gwynn I. A quantitative method of measuring cell adhesion areas (review). Cells Mater 1997;7:15-30. https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=1156&context=cellsandmaterials
8. Perren SM, Regazzoni P, Fernandez AA. How to choose between the implant materials steel and titanium in orthopaedic trauma surgery: Part 2 – biological aspects. Acta Chir Orthop Traumatol Cech 2017;84:85-90. http://www.achot.cz/dwnld/achot_2017_2_085_090.pdf
9. Perren SM, Regazzoni P, Fernandez AA. How to choose between the implant materials steel and titanium in orthopaedic trauma surgery: Part 1 – biological aspects. Acta Chir Orthop Traumatol Cech 2017;84:9-12. http://www.achot.cz/dwnld/achot_2017_1_009_012.pdf
10. Ring D, Jupiter JB, Quintero J, Sanders RA, Marti RK. Atrophic ununited fractures of the humerus with a bony defect: treatment by wave-plate osteosynthesis. J Bone Joint Surg Br 2000;82:867-71. https://doi.org/10.1302/0301-620X.82B6.0820867
11. Lasanianos NG, Kanakaris NK, Giannoudis PV. Current management of long bone large segmental defects. Orthop Trauma 2010;24:149-63. https://doi.org/10.1002/jor.23845
12. Mauffrey C, Barlow BT, Smith W. Management of segmental bone defects. J Am Acad Orthop Surg 2015;23:143-53. https://doi.org/10.5435/JAAOS-D-14-00018
13. Lazzarini L, Mader J, Calhoun J. Osteomyelitis in long bones. J Bone Joint Surg Am 2004;86:2305-18. https://jbjs.org/reader.php?
14. Agner J, Kyle B, Cierny G, Webb L. Diagnosis and management of chronic infection. J Am Acad Orthop Surg 2011;19:8-19. https://journals.lww.com/jaaos/Fulltext/2011/02001/Diagnosis_and_Management_of_Chronic_Infection.3.aspx
15. Fleming M, Watson T, Gaines R, O’Toole R. Evolution of orthopaedic reconstructive care. Am Acad Orthop Surg 2012;20:74-9. https://doi.org/10.5435/JAAOS-20-08-S74
16. Pelissier P, Boireau P, Martin D, Baudet J. Bone reconstruction of the lower extremity: complications and outcomes. Plast Reconstr Surg 2003;111:2223-9. https://doi.org/10.1097/01.PRS.0000060116.21049.53
17. Riley EH, Lane JM, Urist MR, Lyons KM, Lieberman JR. Bone morphogenetic protein-2: biology and applications. Clin Orthop Relat Res 1996;324:39-46. PMID: 8595775
18. Pipitone PS, Rehman S. Management of traumatic bone loss in the lower extremity. Orthop Clin North Am 2014;45:469-82. https://doi.org/10.1016/j.ocl.2014.06.008
19. Cuthbert RJ, Churchman SM, Tan HB, McGonagle D, Jones E, Giannoudis PV. Induced periosteum a complex cellular scaffold for the treatment of large bone defects. Bone 2013;57:484-92. https://doi.org/10.1016/j.bone.2013.08.009
20. Pelissier A, Masquelet R, Bareille S, Mathoulin Pelissier S, Amedee J. Induced membranes secrete growth factors including vascular and osteoinductive factors and could stimulate bone regeneration. J Orthop Research 2004;22:73-9. https://doi.org/10.1016/S0736-0266(03)00165-7
21. Gupta G, Ahmad S, Zahid M, Khan AH, Sherwani MK, Khan AQ. Management of traumatic tibial diaphyseal bone defect by “induced-membrane technique”. Indian J Orthop 2016;50:290-296. https://doi.org/10.4103/0019-5413.181780
22. Ambrose CG, Clyburn TA, Louden K, Joseph J, Wright J, Gulati P, et al. Effective treatment of osteomyelitis with biodegradable microspheres in a rabbit model. Clin Orthop Relat Res 2004;421:293-9. https://doi.org/10.1097/01.blo.0000126303.41711.a2
23. Luangphakdy V, Pluhar E, Piuzzi NS, D’Alleyrand JC, Carlson CS, Bechtold JE, et al. The effect of surgical technique and spacer texture on bone regeneration: A caprine study using the Masquelet technique. Clin Orthop Relat Res 2017;475:2575-85. https://doi.org/10.1007/s11999-017-5420-8
24. DeCoster T, Gehlert R, Mikola E, Pirela-Cruz M. Management of posttraumatic segmental bone defects. J Am Acad Orthop Surg 2004;12:28-38. https://journals.lww.com/jaaos/Fulltext/2004/01000/Management_of_Posttraumatic_Segmental_Bone_Defects.5.aspx
25. Pelissier Ph, Masquelet AC, Lepreux S, Martin D, Baudet J. Behavior of cancellous bone graft placed in induced membranes. Br J Plast Surg 2002;55:598-600. https://doi.org/10.1054/bjps.2002.3936
26. Corona PS, Barro V, Mendez M, Cáceres E, Flores X. Industrially prefabricated cement spacers: do vancomycin and gentamicin-impregnated spacers offer any advantage? Clin Orthop Relat Res 2014;472:923-32. https://doi.org/10.1007/s11999-013-3342-7
27. Rathbone CR, Cross JD, Brown KV, Murray CK, Wenke JC. Effect of various concentrations of antibiotics on osteogenic cell viability and activity. J Orthop Res 2011;29:1070-4. https://doi.org/10.1002/jor.21343
28. Arens S, Schlegel U, Printzen G, Ziegler WJ, Perren SM, Hansis M. Influence of the materials for fixation implants on local infection. An experimental study of steel versus titanium DC-plates in rabbits. J Bone Joint Surg 1996;78:647-51. https://doi.org/10.1302/0301-620X.78B4.0780647
29. Hauke C, Schlegel U, Melcher GA, Printzen G, Perren SM. Local infection in relation to different implant materials. An experimental study using stainless steel and titanium solid, unlocked, intramedullary nails in rabbit. Orthop Trans 1997;21:835-83.
30. Ungersboeck A, Geret V, Pohler O, Schuetz M, Wuest W. Tissue reaction to bone plates made of pure titanium: a prospective, quantitative clinical study. J Mater Sci Mater Med 1995;6:223-9. https://doi.org/10.1007/BF00146860